Категории

Диффузная преципитация

Идентификация и фальсификация молока сырого

Объяснение преподавателя

ПРЕЦИПИТАЦИЯ (лат. praecipitatio стремительное падение) — иммунологическая реакция осаждения из раствора комплекса антиген—антитело, образующегося в результате соединения растворимого антигена (преципитиногена) со специфическими антителами (преципитинами).

Реакцию П. широко используют для идентификации и количественного определения самых разнообразных антигенов и антител (см. Иммунодиагностика), при серодиагностике инф. болезней (см. Серологические исследования), для обнаружения примесей в пищевых продуктах, при изучении эволюционных взаимосвязей в животном и растительном мире, при исследовании структуры различных биол, соединений, в судебной медицине для определения видовой принадлежности пятен крови и других биол, жидкостей.

П. открыта в 1897 т. Краусом (R. Kraus), наблюдавшим выпадение осадка (преципитата) при смешивании бесклеточных прозрачных фильтратов бульонных культур бактерий чумы, холеры, тифа с гомологичными иммунными сыворотками. В 1899 г. Ф. Я. Чистович, иммунизируя кроликов сывороткой угря, получил преципитирующие антитела и тем самым впервые продемонстрировал видовую специфичность белков сыворотки крови. Применение П. в суд.-мед. экспертизе для определения видовой принадлежности крови было предложено в 1901 г. П. Уленгутом. Реакция получила название реакции Чистовича — Уленгута. Впоследствии было показано, что преципитирующие антитела (см.) образуются у представителей различных видов позвоночных к любым чужеродным высокомолекулярным веществам (см. Антигены). Преципитирующие антитела принадлежат к иммуноглобулинам класов G и M (см. Иммуноглобулины). Скорость и интенсивность биосинтеза преципитирующих антител определяются рядом факторов: дозой и путем введения антигена, схемой иммунизации, особенностями хим. структуры антигена и генетическими особенностями иммунизируемого организма.

Для получения преципитирующих сывороток используют различные схемы иммунизации. Хорошие результаты дают схемы из нескольких циклов иммунизации, каждый из которых включает несколько внутривенных или внутримышечных инъекций антигена в возрастающих количествах. В 1915 г. М. И. Райский предложил схему, состоящую из первичной иммунизации и отдаленной реиммунизации. На этом принципе основано получение преципитирующих сывороток высокого титра. Первичную иммунизацию принято проводить антигеном в смеси с каким-либо депонирующим веществом (ланолином, минеральным маслом, алюмокалиевыми квасцами и др.), усиливающим иммунный ответ, а отдаленную реиммунизацию — только антигеном. Широко применяют в качестве депонирующего вещества адъювант (усилитель) Фрейнда, состоящий из смеси минеральных масел и убитых микобактерий туберкулеза (см. Адъюванты).

Раствор антигена, эмульгированный в равном объеме адъюванта Фрейнда, вводят экспериментальным животным подкожно или внутримышечно в несколько точек спины либо в подушечки задних лапок или в подколенные лимф. узлы задних конечностей. В некоторых схемах используют комбинации перечисленных способов введения. Через месяц животным вводят р-р антигена внутривенно или внутримышечно. При необходимости перед реиммунизацией проводят гипосенсибилизацию по Безредке (см. Безредки методы). При незначительном расходе антигена (1—3 мг для белковых антигенов на курс иммунизации) количество образующихся антител достигает нескольких миллиграммов в 1 мл иммунной сыворотки.

Для реакции преципитации характерна высокая специфичность. В серии работ К. Ландштейнера с антисыворотками к конъюгированным антигенам, в качестве детерминантных групп которых выступали различные органические радикалы, было продемонстрировано, что в реакции П. можно дифференцировать стереоизомеры органических соединений. Сила наблюдающихся перекрестных реакций определяется близостью хим. структуры детерминантных групп иммуноантигенов и тест-антигенов. В состав преципитата входят антигены и специфичные к ним антитела и практически не включаются другие белки сыворотки крови, кроме комплемента.

П.— высокочувствительная реакция. С ее помощью могут быть обнаружены десятые доли микрограмма антигена. При определении антител порог чувствительности реакции составляет ок. 20 мкг белка. Чувствительность реакции значительно повышается, если применяют антигены или антитела, меченные радиоактивными изотопами (см.).

Постановка реакции

При постановке реакции преципитации необходимо учитывать ее зональный характер, который выражается в том, что молекулярный состав и количество образующегося преципитата определяются соотношением введенных в реакцию антигена и антител (см. Антиген — антитело реакция). При использовании постоянного количества антисыворотки и возрастающих количеств антигена количество преципитата в ряду пробирок вначале увеличивается, достигает максимума, а затем уменьшается вплоть до полного исчезновения. В надосадочной жидкости первых пробирок обнаруживают свободные антитела (зона избытка антител), в жидкости над максимальным преципитатом не содержатся ни свободные антитела, ни свободный антиген (зона эквивалентности), в надосадочной жидкости последних пробирок находят растворимые иммунные комплексы и свободный антиген (зона избытка антигена). Образование растворимых иммунных комплексов с небольшим молекулярным весом в зоне избытка антигена характерно для всех преципитирующих систем, антитела в которых принадлежат к IgG. Эта зона реакции названа поэтому зоной задержки, или постзоной. Следует отметить, что иммунные комплексы антигенов с IgM-антителами нерастворимы в очень большом избытке антигена, в десятки раз превышающем его количество, достаточное для образования растворимых иммунных комплексов с IgG-антителами.

Для лошадиных противобелковых сывороток характерно образование растворимых иммунных комплексов и в зоне избытка антител, т. е. образование прозоны (см. Нейссера-Вексберга феномен). Эту особенность реакции впервые обнаружил Г. Рамон в системе дифтерийный токсин — антитоксическая лошадиная сыворотка (см. Флоккуляция). Растворение иммунных комплексов в зоне избытка антител наблюдали впоследствии при проведении П. с кроличьими и собачьими сыворотками крови против бычьего сывороточного альбумина, с человеческой сывороткой крови против тиреоглобулина, овечьей антисывороткой против синтетических полипептидов.

Молекулярный состав преципитата определяется также мол. весом (массой) антигена. Для яичного альбумина, мол. вес к-рого 42 000 даль-тон, в зоне эквивалентности на одну молекулу антигена приходится в среднем 2,5 молекулы антител. С увеличением мол. веса антигена число молекул антител, связываемых одной молекулой антигена, увеличивается.

П. используют для качественного и количественного определения антигенов и антител. Быстрый, простой и чувствительный качественный метод П.— кольцепреципитация, предложенная в 1902 г. Асколи . Кольцепреципитацию применяют для идентификации растворимых антигенов микроорганизмов. Реакцию выполняют в узких пробирках или капиллярах, осторожно наслаивая р-р антигена на иммунную сыворотку. При положительной реакции на границе двух жидкостей появляется кольцо преципитации. На результат реакции не влияет избыток антигена благодаря постепенной диффузии реагентов к границе жидкостей. Если в качестве антигенов используют прокипяченные и профильтрованные водные экстракты органов или тканей, то реакция носит название «термопреципитация» (см. Асколи реакция). С помощью термопреципитации обнаруживают термостабильные бактериальные антигены (коктоантигены) в тканях и органах погибших животных при диагностике чумы, холеры, сибирской язвы. Кольцепреципитацию и термопреципитацию выполняют с антисыворотками высокого титра.

К полуколичественным методам П. могут быть отнесены методы оценки силы сывороток и количества антигенов по их предельному разведению, дающему еще видимую П. со стандартным антигеном или анти-сывороткой, и методы оптимальных пропорций.

При титровании сывороток по предельному разведению необходимо подбирать такое количество антигена, чтобы не попасть в зону задержки. Поэтому предварительно определяют наименьшее разведение тест-антигена, при к-ром происходит реакция с заведомо положительной сывороткой. Это рабочее разведение (дозу) антигена используют для определения предельного разведения (титра) испытуемых сывороток. Сравнительное титрование антигена методом предельных разведений можно проводить без предварительного подбора рабочей дозы сыворотки, если она содержит антитела преципитирующего, но не флоккулирующего типа.

Метод оптимальных пропорций основан на определении точки эквивалентности серол. системы по инициальной И. и на том наблюдении, что точка эквивалентности в каждой серол. системе возникает при определенном отношении антитела к антигену. Поэтому при титровании сывороток, определив по быстроте П. количество стандартного антигена, соответствующее точке эквивалентности, можно выразить ее активность в любых условных биол. единицах, если в предварительном титровании с сывороткой известной силы установлено, скольким ее единицам эквивалентен стандартный антиген. Аналогичные расчеты проводят при титровании антигена со стандартной сывороткой. Метод оптимальных пропорций может быть выполнен в a-варианте, предложенном Дином и Уэббом (H. Dean, R. Webb, 1928),— с постоянным объемом сыворотки и возрастающими разведениями антигена и в ?-варианте, предложенном Г. Рамоном (1922),— с постоянным объемом антигена и возрастающими разведениями сыворотки.

Количественный метод определения антител в весовых единицах, предложенный в 1933 г. Гейдельбергером (М. Heidelberger) и Кендаллом (F. Е. Kendall), основан на том, что в зоне эквивалентности из раствора в осадок выпадают практически весь антиген и все антитела. Определив любым хим. методом количество белка преципитата в этой точке и вычтя из него количество прибавленного в пробу антигена, рассчитывают количество белка в осадке, приходящееся на долю антител.

При постановке П. любым из описанных методов следует работать с хорошо отцентрифугированными р-рами антигенов и сывороток. Реакция должна сопровождаться контролем: иммунная сыворотка + изотонический р-р хлорида натрия, нормальная сыворотка + антиген, гетерологическая сыворотка + антиген. Следует предотвращать возможность бактериального загрязнения, выполняя П. в стерильных условиях или применяя консерванты типа мертиолата, амида натрия. Реакцию выполняют при физиол. концентрации соли (0,15 М раствор хлорида натрия), в диапазоне pH 6,5—8,0.

Определение индивидуальных антигенов, находящихся в смеси с другими веществами, возможно в реакции П. только при использовании моноспецифических сывороток. Специфические антитела в сыворотках могут быть идентифицированы, если П. выполняют с индивидуальными антигенами. Для анализа, характеристики и сравнения многокомпонентных систем антиген — антитело без их предварительного фракционирования используют методы, основанные на проведении П. в геле, в частности метод двойной иммунодиффузии по Оухтерлоню (см. Иммунодиффузия) .

П.— двухфазная реакция. Фазы реакции отличаются по механизму и скорости протекания (см. Антиген-антитело реакция). Следует учитывать, что на вторую фазу реакции — собственно образование преципитата — оказывает влияние ряд неспецифических факторов: концентрация в растворе солей и водородных ионов, температура, объем реагентов. При увеличении концентрации солей выше физиол, значения (0,15 М) количество образующегося преципитата уменьшается. В 15% р-ре хлорида натрия преципитаты, образованные полисахаридными антигенами, диссоциируют. Изменение концентрации водородных ионов в физиол. пределах pH (от 6,5 до 8,0) заметно не влияет на формирование преципитата. При снижении pH раствора до 5,0 или повышении до 9,0 существенно уменьшается количество образующегося преципитата, а при pH ниже 3,0 и выше 11,0 ранее образованные преципитаты диссоциируют. На свойстве преципитатов диссоциировать в крепких солевых р-рах и при крайних значениях pH основаны методы выделения чистых антител и антигенов из специфических преципитатов. Наиболее употребляемые диссоциирующие агенты — концентрированные р-ры нейтральных солей, разбавленные к-ты и щелочи, концентрированные р-ры амидов, полианионы.

Преципитация в судебно-медицинском отношении

В судебной медицине П. применяют для дифференцирования крови человека и животных (см. Кровь). Наибольшее распространение получила кольцепреципитация, но она не пригодна для исследования мутных р-ров антигена и подвержена неспецифическим влияниям загрязнений объекта экспертизы. Этих недостатков лишена П. в агаровом геле, однако она требует длительных сроков наблюдения и менее чувствительна. Внедряют в практику электропреципитацию, или встречный иммуноэлектрофорез (см.), сочетающий достоинства П. в агаре с высокой чувствительностью и быстротой проведения реакции. Все варианты П. осуществляют с иммунными сыворотками (см.), преципити рующими белки человека, собаки, лошади и др. Они должны быть активны и специфичны, т. е. вызывать П. гомологичного антигена (напр., соответствующей нормальной сыворотки крови человека пли животного) и не образовывать преципитата с гетерологичными (чужеродными) антигенами.

Из исследуемых пятен крови готовят вытяжки и разводят их до необходимой концентрации белка. Для П. в агаре можно брать вырезки (вытяжки) из пятен и проводить реакцию с несколькими преципитирующими сыворотками. Параллельно испытывают контрольные участки предмета — носителя пятен, которые не должны вызывать П. При положительном результате с пятном крови и преципитирующей сывороткой делают вывод о видовой принадлежности крови, напр. кровь человека, собаки и др. При этом нельзя точно установить происхождение крови, если она принадлежит близкородственным животным (напр., кровь собаки или волка). Отрицательный результат при наличии в вытяжке белка свидетельствует о принадлежности крови животному, белок к-рого не выявляется с помощью обычного набора преципитирующих сывороток. Если в вытяжке не установлен белок, то принимают во внимание лишь положительный результат, т. к. отсутствие преципитата можно объяснить недостаточным количеством белка в вытяжке.


Библиография: Бойд У. Основы иммунологии, пер. с англ., с. 314, М., 1969; К з-бот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., с. 8 и др., М., 1968; Райски й М. Быстрое получение крепких преципитинов, Харьковск. мед. журн.,т. 20, № 8, с. 135, 1915; он же, Повторная иммунизация, как метод получения преципитирующих сывороток, там же, с. 142; он же, Как долго сохраняются в крови иммунизированного животного крепкие преципитины, там же, № 9, с. 161; он же, Как нужно иммунизировать, чтобы животное устойчиво и длительно сохраняло в крови крепкие преципитины, там же, с. 169; Туманов А. К. Основы судебно-медицинской экспертизы вещественных доказательств^ с. 57,М., 1975; Ч а р н ы й В. И. Установление видовой специфичности белков крови, М., 1976; Чистович Ф. Я. Изменения свойств крови при впрыскивании инородной сыворотки и крови, в связи с теорией иммунитета Ehrlich’a, Рус. арх. патол., клин, мед. и бакт., т. 8, в. 1, с. 21, 1899; С а г-р enter Ph. L. Immunology and serology, Philadelphia, 1975; Methods in immunology and immunochemistry, ed. by C. A. Williams a. M. W. Chase, v. 3, N. Y.— L., 1971.


И. А. Тарханова; В. И. Чарный (суд.).

Источник: http://xn--90aw5c.xn--c1avg/index.php/ПРЕЦИПИТАЦИЯ

РДП.Реакция диффузной преципитации.

РДП.Реакция диффузной преципитации.

Цель: индикация, идентификация и титрование антигена или антитела.

Сущность: Антиген и антитело диффундируют на встречу друг к другу в агаровом геле, и при специфичности, в месте соединения образуется комплекс антиген-антитело в виде светлой полосы – линии преципитации.

Техника постановки:

-микрометод

В агаровом геле по трафарету вырезают 5 луночек, в центральную лунку вносим вирусный материал или стандартную сыворотку с антителами. Вокруг исследуемого объекта, вирус суспензию(заведомо положительный антиген или вирус), заведомо отрицательный антиген, и физиологический раствор. Помещают стекло в трмостат при 370 в условиях влажной ткани. Учёт через 6-12-24 часа, контролем являются заведомо полож. и заведомо отриц. антигены. Линия преципитации обязательно должна быть м/у сывороткой и положит. антигеном.

Не должна быть между антигеном и физ. раствотом.

-макрометод

Тоже самое, что и микрометод, только в чашке петри.

-капилярный метод

Стеклянный каиляр заполняют агаровым гелем, с одной стороны вливают антиген, с другой антитело. Это реакция требует высокой концентрации компонентов.

 

Семейство Тоговирусов (вирусная диарея крс).

(Togaviridae), семейство вирусов, состоящее из родов Alphavirus, Flavivirus, Rubivirus и Pestivirus. Вирусы содержат однонитчатую РНК линейной формы, к-рая является инфекционной. Вирионы диаметром 50—70 нм (альфавирусы), 40—50 нм (флявивирусы), 70 нм (рубивирусы), 40 нм (пестивирусы). Для капсида альфавирусов свойствен икосаэдральный тип симметрии. Род флявивирусов включает 57 вирусов, из них ряд вирусов, имеющих значение в вет. и мед. патологии,— энцефалитов клещевого, энцефаломиелита овец, омской геморрагич. лихорадки, лихорадок жёлтой, К роду рубивирусов относятся возбудители краснухи и, возможно, артерита лошадей, к роду пестивирусов — возбудители диареи коров (комплекс), лихорадки свиней (. Классическая чума свиней),

Вирусная диарея крупного рогатого скота Остро протекающая контагиозная болезнь, характеризующаяся лихорадкой, диареей, ринитом, эрозийноязвенным воспалением слизистых пищеварительного тракта. Заболевание установлено в 1946 г. Ольсороном и сотрудниками в США.
Возбудитель: РНКсодержащий вирус, относится к сем. Togaviridae, роду Pestivirus; имеет сферическую форму (Гиллепси, 1961 г.). Вирус сохраняется годами при — 20°С, в культуральной жидкости не теряет биологическую активность до 1 года, в крови, в лимфатических узлах, селезенке и др. патологическом материале — до 6 мес. При температуре 25°С в течение 1 сут вирус практически не снижает биологическую активность, при 37°С погибает через 5 сут. Вирус чувствителен к эфиру, хлороформу, трипсину и дезоксихолату натрия.
Эпизоотология. Течение и симптомы. Восприимчивы: телята в возрасте от 6 мес до 2 лет.
Инкубационный период: 6—9 суток.
Источник инфекции: больные животные и вирусоносители.
Пути передачи: алиментарный, через обслуживающий персонал.
Симптомы: при остром течении температура повышается до 40—42°С, депрессия, потеря аппетита, истечение из носа, эрозии и язвы на слизистой носовой полости, изъязвления кожи на венчике, кал зловонный, жидкой консистенции, с пеной и слизью; гибель на 2—3 сутки. У коров и молодняка старшего возраста — абортивная форма.
Патолого-анатомические изменения. Обнаруживают подкожные студенистые отеки, гиперемию легких, участки уплотнения красного цвета, окруженные зоной эмфиземы. Слизистая трахеи, бронхов и бронхиол гиперемирована и покрыта слизистогнойным экссудатом. Между долями легкого иногда находят фиброзную ткань. Отмечают также отечность, гиперемию или некроз заглоточных, шейных, бронхиальных и средостепенных лимфоузлов.
Диагностика. В лаборатории проводят РП в агаровом геле, РН в культуре тканей, иммунофлюоресценцию, биопробу на телятах. От больных животных в ранней'стадии болезни отбирают кровь, смывы с носовой полости, фекалии, от вынужденно убитых или павших животных направляют часть различных отделов кишечника, носовой перегородки трахеи, легких, селезенки, лимфоузлы; от абортированных плодов берут кусочки паренхиматозных органов, околоплодную жидкость.
Дифференциальная диагностика. При диагностике вирусной диареи необходимо исключить чуму, злокачественную катаральную горячку, ящур, инфекционный ринотрахеит, парагрипп3, аденовирусную, реовирусную, коронавирусную инфекцию крупного рогатого скота, паратуберкулез, некробактериоз (см. выше).
Профилактика и лечение. Лечение: средства специфической терапии не предложены, проводят симптоматическое лечение.
Профилактика: рекомендуется убой больного скота и проведение ограничительных мероприятий.



 

Сплит-вакцины, методы получения.

Вакцины из расщеплённого вириона (сплит) после обработки эфира содержат осколки разрушенных вирусных частиц (АГ + баластные примеси).При обработке вирионов этиловым эфиром удаляются липиды.

3 метода получения:

1. получаем большое количество вирусов, их выделяют и получают, имунногенные субъединицы – сплит-вакцины (дорогой способ).

2. Химический синтез специфического иммуногена, но для этого над знать структуру и амминокислотный состав Аг. После их синтеза их соединяют белком носителем. Затем эту смесь используют в качестве вакцины.

3. Генная инженерия. Установлена у отдельных вирусов. Мозаичность генов, т.е. гены кодируются определённый белок имеют вставки, которые не имеют отношения к синтезу белка. Чтобы ген-инфекция реализовалась, вставки вырезают специальными ферментами. Генноинженерные вакцины получают с помощью биотехнологий.

Физическая структура вирусов

.Вирусы имеют каждый свою морфологию.Вирусная частица хорошо приспособлена к переносу НК от одной клетки к другой. Различают:

- вирусные частицы, имеющие липидную оболочку,

- вирусные частицы не имеющие наружной оболочки.

Типы структур:

- палочковидные (спиралевидные)

- нитевидные

- кубической (икосаэдрической) формы.

Суб единица вируса – единая, уложенная определенным образом полипептидная цепь. Капсид – белковый чехол, окружающий ДНК.

Репродукция вирусов

Репродукция вируса – это образование многочисленных копий вирусов (вирусных нуклеиновых кислот) и индуцирование биосинтеза вирусных белков с последующей самоорганизацией этих компонентов в зрелые вирусные вирусные частицы. Вирусы покидают клетку путём взрыва, в том случае, если клетка энергетически истощается, и погибает. Иногда вирусы выходят почкованием (обвиваются клеточной оболочкой), при латентных инфекциях вирус может мирно существовать с клеткой некоторое время.

Основные особенности репродукции.

- наличие РНК или ДНК

- многообразие форм и структуры геномов

- почти все вирусные ДНК способны реплицироваться независимо от ДНК клетки, тогда как клеточные РНК могут синтезироваться только на матрице клеточной ДНК.

- Разобщенный во времени и пространстве (дезъюнктивный) биосинтез структурных компонентов вирусов.

- Вирусы не имеют собственных белок-синтезирующих систем, а используют для этих целей системы клетки.

Наличие большого разнообразия механизмов репликации. Под адсорбцией принято понимать первичный контакт вируса с клеткой. Часто этот контакт сначала бывает очень слабым - обратимая адсорбция. Затем прочность контакта возрастает - необратимая адсорбция. Термин «проникновение» ошибочен потому, что он подразумевает активное воздействие на атакуемую клетку определенной части вириона, что не было доказано. Более вероятно, что во многих случаях на самом деле имеет место совсем другой процесс - прикрепление вируса к клетке вследствие физико-химической комплементарности между поверхностью вируса и молекулами рецепторов, находящихся на поверхности клетки, индуцирует в клетке изменения, необходимые для проникновения в нее вируса. Процесс начинается со случайных столкновений множества вирионов с поверхностью клетки. Участок связывания на поверхности вириона, непосредственно взаимодействующий с рецептором клетки, может состоять из индивидуального структурного вирусного белка, а может и представлять собой мозаику из нескольких белков капсида (по-видимому, именно так обстоит дело у пикорнавирусов). Рецептором во всех случаях служит расположенный на поверхности клетки белок или гликопротеид. На поверхности клетки имеются различные рецепторы, каждый из которых специфичен для своего вируса. Специфичность этих рецепторов не абсолютна, что приводит к возможности группировки вирусов по этому свойству в своеобразные «семейства». Следует подчеркнуть, что сам факт адсорбции вируса на клетке еще никоим образом не означает инициации вирусной инфекции. Связи, образующиеся при адсорбции между вирусом и клеткой, могут быть «слабыми»,, а адсорбция «обратимой», т.е. вирион может покидать поверхность клетки. Однако некоторые из адсорбировавшихся на клетке вирионов связываются с ней более прочными «необратимыми» связями. Следующий этап после прочного прикрепления вириона к поверхности чувствительной клетки - это проникновение внутрь клетки всего вириона или его части и начало синтеза вирус-специфического белка или вирусной м РНК. Проникновение вирионов в клетку и активация вирусного генома могут происходить у разных вирусов по-разному. Ясно, что вирусы с оболочкой и «голые» вирусы должны проникать в клетку в результате разных физико-химических процессов. Уже давно предполагали, что в основе проникновения в клетку вирусов с оболочкой, вероятно, лежит процесс, в какой-то мере подобный «плавлению мембраны», или процесс «слияния». Что же касается таких относительно больших белковых структур, как голые вирионы, то для них известен только один механизм проникновения в клетку - это фагоцитоз, и уже давно предполагается, что такие вирусы проникают в клетки в результате варианта фагоцитоза, названного «виропексисом». ДНК большинства ДНК-содержащих вирусов синтезируется в ядре клетки. Напротив, белки всех без исключения вирусов синтезируются в цитоплазме. Заражение клеток вирусами в принципе может привести к двум последствиям. Зараженная клетка может либо погибнуть, образовав при этом большое количество вируса (литический тип взаимодействия вирусов с клетками), либо продолжать жить и делиться, синтезируя небольшие количества вируса. Многие вирусы лизируют клетки очень редко, и обычно в зараженных клетках устанавливается состояние устойчивого равновесия - образуется персистентно инфицированная культура клеток. Установлено, что при успешной литической инфекции в зараженных клетках происходит пять четко отличающихся друг от друга событий, реализуемых функционально активными вирус-специфическими белками. Это следующие события: 1) подавление вирусом ряда клеточных функций; 2) синтез вирусных м РНК; 3) репликация вирусного генома; 4) морфогенез вирионов; 5) освобождение вирионов из клетки



Предыдущая1234567Следующая

Источник: http://stydopedia.ru/1x21bb.html

Реакция диффузионной преципитации в геле (РДП)

Реакция диффузионной преципитации (РДП)

 

Эта реакция нашла широкое применение при диагностике вирусных болезней, а также для определения титра преципитирующей сыворотки, для установления токсигенности некоторых видов микроорганизмов и др.

Техника проведения этой реакции сводится к следующему.

В стерильные чашки Петри разливают по 20-25 мл осветленного 1-1,5%-ного агара. После застывания агара в его слое делают лунки диаметром 5-6 мм в центре и на периферии на расстоянии 4-5 мм друг от друга. В каждую лунку вносят по одной капле агара для формирования дна лунки. Розлив компонентов реакции в лунки проводится различно в зависимости от поставленных целей.

Через 48 часов (24 часа инкубирования в термостате, 24 часа при комнатной температуре) проводится учет результатов реакции. За это время реагенты диффундируют в агар навстречу друг другу. При положительной реакции в месте встречи образуются полосы (дуги) – линии преципитации серо-белого цвета (рис. 62).

Рис. 62. Реакция диффузионной преципитации в агаровом геле

 

Эта реакция может быть осуществлена и микрометодом. В этом случае на предметных стеклах приготавливают слой агара, в котором делают лунки. В остальном эта реакция сходна с макрометодом.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |

Источник: http://studall.org/all-45651.html
Еще по теме: